

ДАТЧИК ДАВЛЕНИЯ BD SENSORS

серия DMD

модель 331-А-Ѕ

Руководство по монтажу и эксплуатации

г. Москва

2010

000 «БД СЕНСОРС РУС»

117105, г. Москва, Варшавское ш., д.37A Тел.: (495) 380-16-83 | www.bdsensors.ru Факс: (495) 380-16-81 | sales@bdsensors.ru

СОДЕРЖАНИЕ

1. Описание и работа	3
1.1. Назначение	3
1.2. Технические характеристики	3
1.3. Состав изделия	8
1.4. Устройство и работа	8
1.5. Локальная настройка	12
1.6. Удаленная настройка по HART-протоколу	18
1.7. Обеспечение взрывозащищённости	23
1.8. Маркировка	24
1.9. Упаковка	24
2. Использование по назначению	24
2.1. Общие указания	24
2.2. Эксплуатационные ограничения	
2.3. Меры безопасности	25
2.4. Монтаж и демонтаж. Обеспечение взрывозащищённости при монтаже	25
3. Техническое обслуживание	27
4. Хранение и транспортировка	27
ПРИЛОЖЕНИЕ А. Условное обозначение	28
ПРИЛОЖЕНИЕ Б. Габаритные и присоединительные размеры. Состав	32
ПРИЛОЖЕНИЕ В. Схемы внешних электрических соединений	35

1. Описание и работа

1.1.1.1. Назначение

1.1.1. Датчик давления серии DMD 331-A-S (в дальнейшем датчик), предназначен для непрерывного преобразования измеряемой величины — абсолютного, избыточного давления, разрежения или разности давлений жидких и газообразных (в том числе газообразного кислорода и кислородсодержащих газовых смесей) сред (в том числе агрессивных) в унифицированный токовый выходной сигнал 4–20 мА и цифровой сигнал на базе HART-протокола. Цифровой сигнал может приниматься любым устройством, поддерживающим HART-протокол. Для связи с датчиком и настройки его параметров может использоваться ручной HART-коммуникатор или HART-модем. Датчик может быть оснащён многострочным жидкокристаллическим дисплеем.

Датчик предназначен для использования в системах автоматического контроля, регулирования и управления технологическими процессами в различных отраслях промышленности. Датчик может быть оснащён выносными мембранами для работы с высокотемпературными и/или агрессивными средами. Разделитель заполняется силиконовым маслом. Для работы с кислородом (и иными сильными окислителями) разделитель заполняется галокарбоном. Варианты материала мембраны разделителя — сталь нержавеющая различных марок, тантал, специальные сплавы: Hastelloy, Monel.

- 1.1.2. Датчик может быть выполнен во взрывозащищённом исполнении. Взрывозащищённый датчик соответствует требованиям ГОСТ Р 51330.0, ГОСТ Р 51330.10 или ГОСТ Р 51330.1 и имеет вид взрывозащиты "искробезопасная электрическая цепь" с уровнем взрывозащиты "особовзрывобезопасный" с маркировкой 0ЕхіаПСТ4 или "взрывонепроницаемая оболочка" с уровнем взрывозащиты "взрывобезопасный" с маркировкой 1ЕхиПСТ6. Взрывозащищённый датчик предназначен для установки и работы во взрывоопасных зонах помещений и наружных установок согласно нормативным документам, регламентирующих применение электрооборудования во взрывоопасных зонах.
- 1.1.3. Условное обозначение датчика при заказе приведено в Приложении А.

1.2.1.2. Технические характеристики

1.2.1. В таблице 1 приведены верхние пределы измерений (ВПИ) и значения статического давления для датчиков разности давлений. В таблице 2 приведены ВПИ и значения перегрузочного давления для датчиков избыточного и абсолютного давления. Нижний предел измерения (НПИ) и диапазон датчика может быть перенастроен в широких пределах. НПИ по умолчанию равен нулю. Для датчиков разности давлений и избыточного давления значение НПИ может быть установлено меньше нуля. При этом для датчиков избыточного давления с ВПИ, меньшим или равным 50 кПа, и для датчиков разности давлений, значение НПИ по модулю не может быть больше ВПИ. Для датчиков избыточного давления с ВПИ от 250 кПа предельное значение НПИ равно -100 кПа.

Таблица 1

ВПИ, кПа (разность давлений)	1	5	50	250	2 500	25 000
Максимальное стати-	0,5	8		16		_
ческое давление, МПа	_	_	32			

Таблица 2

ВПИ, кПа (изб.)	1	5	50	250	2 500	25 000	_	40 000
ВПИ, кПа (абс.)	ı	5	50	250	2 500	_	25 000	40 000
Давление перегруз- ки, МПа	0,5	8		16		40	32	52

1.2.2. ВПИ и НПИ датчиков могут перенастраиваться в широких пределах при помощи НАRT-модема или НАRT-коммуникатора, либо локально при помощи магнитного карандаша. Масштаб перенастройки диапазона в зависимости от номинального ВПИ датчика приведен в таблице 3.

Таблица 3

ВПИ, кПа	1	5	50	250	2 500	25 000	40 000
Разность дав- лений /изб.	1:20	1:40			1:120		
Абс.	-	1:2,5	1:20	1:50		1:120	

1.2.3. Выходной сигнал датчика: аналоговый 0–20 мА или 4–20 мА с цифровым сигналом на базе HART-протокола.

Датчик имеет следующие характеристики аналогового выходного сигнала:

- линейная характеристика:

$$Y_{_{6blX}}=\left|rac{Y_{_{B\Pi H}}-Y_{_{H\Pi H}}}{P_{_{H\!\varPi}}}\cdot P
ight|+Y_{_{H\Pi H}}$$
 , где

Р - текущее значение измеряемого давления,

 $P_{\!\scriptscriptstyle HI\!I} = P_{\!\scriptscriptstyle BI\!II\!I} - P_{\!\scriptscriptstyle HI\!II\!I}$ - номинальный диапазон давления (диапазон измерения),

 $P_{\mathit{B\Pi H}}$, $P_{\mathit{H\Pi H}}$ - соответственно верхний и нижний предел измерений датчика,

 $Y_{\!B\Pi\!H}$, $Y_{\!H\Pi\!H}$ - значения выходного сигнала, соответствующие верхнему и нижнему пределу измерений датчика $P_{\!B\Pi\!H}$ и $P_{\!H\Pi\!H}$.

- квадратичная характеристика

 $Y_{\mbox{\tiny \it BbLX}} = 10\sqrt{P}$, где $Y_{\mbox{\tiny \it BbLX}}$ и P выражены в % от диапазона.

Характеристика квадратична выше точки отсечки и линейна ниже данной точки (см. рис. 1). По умолчанию точка отсечки установлена равной 6 % от диапазона измерения.

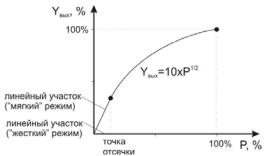


Рис. 1

- квадратичная, третьей степени

$$\overline{Y_{_{6bix}}}=0,1\sqrt{P^3}$$
 , где $Y_{_{6bix}}$ и P выражены в % от диапазона.

- квадратичная, пятой степени

$$Y_{\scriptscriptstyle 6blX}=0.001\sqrt{P^5}$$
 , где $Y_{\scriptscriptstyle 6blX}$ и P выражены в % от диапазона.

- табличные данные

При выборе данного типа выходного сигнала выходной сигнал будет соответствовать кривой, заданной в таблице. К примеру, это требуется для пересчета давления жидкости в резервуаре в объём или массу. Максимальное количество задаваемых точек – 16. Для уменьшения погрешности рекомендуется задавать больше точек в наименее линейных участках зависимости выходного сигнала от давления.

1.2.4. Питание датчика осуществляется от источника питания постоянного тока. Напряжение питания от 12 до 45 В. Сопротивление нагрузки не должно превышать значения $R_{\rm max}$:

$$R_{\max} = rac{V_{num} - 12}{0.02}\,{
m Om},$$
 где V_{num} - текущее значение напряжения питания.

При этом, минимальное сопротивление нагрузки для связи с датчиком по HART-протоколу – 250 Ом (см. рис. 2).

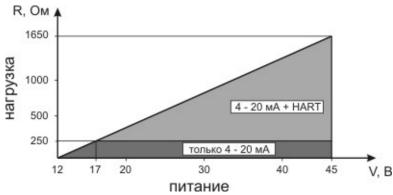


Рис. 2

- 1.2.5. Датчик не выходит из строя при коротком замыкании или обрыве питающих или сигнальных линий, а также при подаче напряжения питания обратной полярности.
- 1.2.6. Питание датчика взрывозащищённого исполнения с видом взрывозащиты "искробезопасная электрическая цепь" осуществляется от искробезопасных барьеров или блоков питания, имеющих вид взрывозащиты "искробезопасная электрическая цепь" с уровнем взрывозащиты "ia" для взрывоопасных газовых смесей подгруппы IIC по ГОСТ Р 51330.0. Выходное напряжение U_0 и ток I_0 искробезопасных барьеров или блоков питания не должны превышать $28~\mathrm{B}$ и $93~\mathrm{mA}$ соответственно.
- 1.2.7. Потребление тока датчиком не превышает 21 мА.
- 1.2.8. Время реакции на изменение давления менее 200 мс. Время между подачей напряжения питания и готовностью датчика к работе не превышает 3 с.
- 1.2.9. Метрологические характеристики приведены в таблице 4.

Таблипа 4

СТАНДАРТНОЕ ИСПОЛНЕНИЕ					
ВПИ	Основная погрешность (нелинейность, г воспроизводимость)	истерезис и	Установленный диапазон, Р _{уд}		
1 кПа (разность давле-	± 0,1 % ДИ		$0,2$ х $P_{HД} \le P_{YД} \le P_{HД}$		
ний/изб.)	$\pm [0.025 + 0.015 x (P_{HД}/P_{УД})] \%$ Д	M	$0.05 { m xP}_{ m HJ} \le { m P}_{ m VJ} < 0.2 { m xP}_{ m HJ}$		
От 5 до 2500 кПа (разность	± 0,075 % ДИ		$0.1 \mathrm{xP}_{\mathrm{H}\mathrm{J}} \leq \mathrm{P}_{\mathrm{Y}\mathrm{J}} \leq \mathrm{P}_{\mathrm{H}\mathrm{J}}$		
давлений/изб.)	$\pm [0.0375 + 0.00375 \text{x} (P_{\text{HД}}/P_{\text{УД}})] \%$,		$0,025 \mathrm{xP}_{\mathrm{HД}} \le \mathrm{P}_{\mathrm{УД}} < 0,1 \mathrm{xP}_{\mathrm{HД}}$		
давлении изо.)	$\pm [0,0015 + 0,00465x(P_{HД}/P_{YД})] \%$,	ДИ	$0,0085 \mathrm{xP_{HJ}} \le \mathrm{P_{YJ}} < 0,025 \mathrm{xP_{HJ}}$		
25 МПа, 40 МПа (разность	± 0,1 % ДИ		$0,1$ х $P_{HД} \le P_{УД} \le P_{HД}$		
давлений/изб.),	$\pm [0.050 + 0.005 \mathrm{x} (P_{\mathrm{HД}}/P_{\mathrm{УД}})] \%$ Д		$0.025 \mathrm{xP}_{\mathrm{HД}} \le \mathrm{P}_{\mathrm{УД}} < 0.1 \mathrm{xP}_{\mathrm{HД}}$		
от 50 кПа до 40 МПа (абс.)	$\pm [0,010 + 0,006 \mathrm{x} (P_{\mathrm{HД}}/P_{\mathrm{УД}})] \%$ Д	A .	$0,0085 \mathrm{xP_{HJ}} \le \mathrm{P_{YJ}} < 0,025 \mathrm{xP_{HJ}}$		
ВПИ	Дополнительная погрешность, вызванн		Установленный		
	нием температуры измеряемой ср	оеды	диапазон, $\mathbf{P}_{\mathbf{y}\mathbf{J}}$		
1 кПа	± [0,075 % ВПИ + 0,025 % ДИ] / 1	0°C	$0.2xP_{HJJ} \le P_{YJJ} \le P_{HJJ}$		
(разность давлений/изб.)	± [0,05 % ВПИ + 0,15 % ДИ] / 10	°C	$0.05 \mathrm{xP}_{\mathrm{H}\mathrm{J}} \leq \mathrm{P}_{\mathrm{Y}\mathrm{J}} < 0.2 \mathrm{xP}_{\mathrm{H}\mathrm{J}}$		
5 кПа (разность давле-	± [0,040 % ВПИ + 0,025 % ДИ] / 1	0°C	$0,2$ х $P_{HД} \le P_{УД} \le P_{HД}$		
ний/абс./изб.)	± [0,030 % ВПИ + 0,075 % ДИ] / 1	0°C	$0.025 \mathrm{xP}_{\mathrm{H}\mathrm{J}} \le \mathrm{P}_{\mathrm{y}\mathrm{J}} < 0.2 \mathrm{xP}_{\mathrm{H}\mathrm{J}}$		
От 50 кПа до 40 МПа (раз-	± [0,01 % ВПИ + 0,03 % ДИ] / 10		$0,2$ х $P_{HД} \le P_{YД} \le P_{HД}$		
ность давлений/абс./изб.)	± [0,012 % ВПИ + 0,023 % ДИ] / 1	0°C	$0,0085 \mathrm{xP}_{\mathrm{HД}} \leq \mathrm{P}_{\mathrm{УД}} < 0,2 \mathrm{xP}_{\mathrm{HД}}$		
ВПИ	Влияние изменения	цавления на			
Dilli	-нулевое значение ⁽¹⁾		-диапазон		
1 кПа (разность давлений)	\pm 0,1 % ВПИ / 500 кПа	=	± 0,2 % ИВ / 500 кПа		
5 кПа (разность давлений)	± 0,03 % ВПИ / 1 МПа		± 0,06 % ИВ / 1 МПа		
От 50 кПа до 25 МПа (разность давлений)	$\pm0,05~\%$ ВПИ / 10 МПа	=	± 0,3 % ИВ / 10 МПа		
ВПИ	Долговремен	ная стабильно	ость		
1 кПа, 5 кПа	\pm 0,2 % ВПИ / год $^{(2)}$				
От 50 кПа до 40 МПа	$\pm 0,15 \%$ ВПИ / 5 лет ⁽³⁾				

ИСПОЛНЕНИЕ С УЛУЧШЕННЫМИ МЕТРОЛОГИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ, Материал мембраны - сталь нержавеющая 316L или Hastelloy C276, заполнение – силиконовое масло

заполнение – силиконовое масло					
ВПИ	Основная погрешность (нелинейность, гистерез	ıc	Установленный		
ын	и воспроизводимость)		диапазон, $\mathbf{P}_{\mathbf{y}_{\mathbf{J}}}$		
50 кПа (разность давле-	±0.04%ДИ		$0,2$ х $P_{HД} \le P_{YД} \le P_{HД}$		
ний/изб.)	$\pm [0.0217 + 0.0037 x (P_{HД}/P_{УД})] \%$ ДИ	($0.05 x P_{HД} \le P_{YД} < 0.2 x P_{HД}$		
пии/изо.)	$\pm [0,0021 + 0,0046x(P_{HД}/P_{УД})] \%$ ДИ	0,0	$0085 x P_{HД} \le P_{YД} < 0.05 x P_{HД}$		
250 kHa 2500 kHa (naa	± 0,05 % ДИ		$0.1 \mathrm{xP}_{\mathrm{H}\mathrm{J}} \leq \mathrm{P}_{\mathrm{Y}\mathrm{J}} \leq \mathrm{P}_{\mathrm{H}\mathrm{J}}$		
250 кПа, 2500 кПа (разность давлений/изб.)	$\pm [0,0050 + 0,0045x(P_{HД}/P_{УД})] \%$ ДИ	($0.05 x P_{HД} \le P_{УД} < 0.1 x P_{HД}$		
пость давлении/изо.)	$\pm [0,0021 + 0,0046x(P_{HД}/P_{УД})] \%$ ДИ	0,0	$0.085 \text{xP}_{H,\!\Pi} \le P_{y,\!\Pi} < 0.05 \text{xP}_{H,\!\Pi}$		
ВПИ	Дополнительная погрешность, вызванная изме	-	Установленный		
DIII	нением температуры измеряемой среды		диапазон, Р _{уд}		
	± [0,009 % ВПИ + 0,006 % ДИ] / 10°C (в диап1050°C)		0.2 _v D < D < D		
От 50 кПа до 2500 МПа			$0.2xP_{HД} \le P_{YД} \le P_{HД}$		
(разность давлений/изб.)	± [0,010 % ВПИ + 0,001 % ДИ] / 10°С		0005D < D < 0.2D		
	(в диап1050°С) 0,0085хР _{НД} ≤ Руд <		$0085 x P_{HД} \le P_{YД} < 0.2 x P_{HД}$		
ВПИ	Влияние изменения статич	еского давл	ения на		
БПИ	-нулевое значение ⁽¹⁾		-диапазон		
От 50 кПа до 2500 МПа	± 0,036 % ВПИ / 10 МПа	+ 0	3 % ИВ / 10 МПа		
(разность давлений/изб.)	$\pm 0,036~\%$ ВПИ / 10 МПа $\pm 0,3~\%$ ИВ / 10 МПа				
ВПИ	Долговременная стабильность				
50 кПа	$\pm 0{,}05 \%$ ВПИ / 6 мес $^{(3)}$				
250 кПа	± 0,075 % ВПИ / год ⁽³⁾				
$\pm 0,1 \% \ \mathrm{BHH} \ / \ 2 \ \mathrm{годa}^{(3)}$					
	Дополнительная погрешность, вызванная изменением напряжения питания: 0,005 % ДИ / В				
Смещение ну	Смещение нулевого значения при изменении ориентации ⁽⁴⁾ до 250 Па				

Смещение нулевого значения при изменении ориентации (1) - устраняется установкой нуля при рабочем статическом давлении. (2) — при нормальных условиях и статическом давлении до 100 кПа. (3) — при нормальных условиях и статическом давлении до 7 МПа. (4) - устраняется установкой нуля в рабочем положении.

ООО «БД СЕНСОРС РУС»

1.2.10. Диапазоны температур измеряемой и окружающей среды, а также диапазон температур хранения, приведены в таблице 5.

Таблица 5

	Диапазон температур	Условие
Диапазон температур окружающей среды	−40…85 °C	_
	−40…100 °C	заполнение – силиконовое масло
Диапазон температур	085 °C	заполнение – Halocarbon, Fluorolube
измеряемой среды	−25…100 °C	уплотнение Витон
	−40…150 °C	для фланцевого датчика уровня
Диапазон температур	−40…100 °C	для датчика без дисплея
хранения	−20…80 °C	для датчика с дисплеем

- 1.2.11. По устойчивости к механическим воздействиям, датчики относятся к группе исполнения V2 по ГОСТ 12997: датчики устойчивы к воздействию синусоидальной вибрации с ускорением 19.6 м/с 2 в диапазоне частот 10...150 Гц и амплитудой 0,15 мм.
- 1.2.12. Датчики устойчивы к воздействию многократных механических ударов с пиковым ударным ускорением 1000 м/c^2 , при длительности действия ударного ускорения 11 мc.
 - 1.2.13. Средняя наработка на отказ не менее 100000 ч.
- 1.2.14. Средний срок службы 12 лет. Данный показатель надёжности устанавливается для следующих условий:
 - температура окружающей среды (23±3) °C;
 - относительная влажность от 30 до 80%;
 - вибрация, тряска, удары, влияющие на работу датчика, отсутствуют.
- 1.2.15. Поверка датчика осуществляется в соответствии с методикой поверки "Преобразователи давления измерительные DMP, DMD, DS, DMK, XACT, DM, DPS, HMP, HU, LMP, LMK", утвержденной ФГУП ВНИИМС в $2010\,\mathrm{r}$.

Межповерочный интервал составляет:

- 5 лет для датчика, настроенного на ВПИ, при обеспечении корректировки нулевого значения каждые 6 месяцев;
 - 2 года для остальных датчиков.
 - 1.2.16. Масса датчика без монтажных принадлежностей не более 3,2 кг (кроме фланцевого датчика уровня), не более 9,0 кг (для фланцевого датчика уровня).

1.3.1.3. Состав изделия

Таблица 6

Наименование	Кол-во	Примечание
Датчик	1	
Паспорт	1	
Потребительская тара	1	
Инструмент локальной	1	Поставляется по отдельному заказу
настройки		
Монтажный крон-	1	Поставляется по отдельному заказу
штейн		
Руководство по эксп-	1	Допускается комплектовать одним экземпляром каждые
луатации		десять датчиков, поставляемых в один адрес
Методика поверки	1	По запросу. Допускается комплектовать одним экземпля-
		ром каждые десять датчиков, поставляемых в один адрес

1.4.1.4. Устройство и работа

- 1.4.1. Датчик состоит из сенсора, фланцев, электронного преобразователя и ЖК дисплея, конструктивно объединенных в алюминиевом или стальном корпусе.
- 1.4.2. В датчике используется емкостной сенсор.

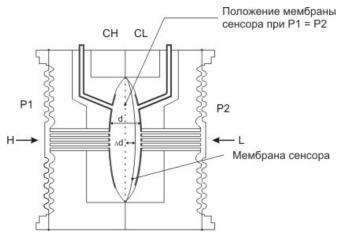


Рис. 3

- P1 и P2 давление в плюсовой (H) и минусовой (L) камерах.
- СН емкость между непдвижной стенкой со стороны Р1 и мембраной.
- CL емкость между непдвижной стенкой со стороны P2 и мембраной.
- d расстояние между неподвижными стенками.
- Δd отклонение мембраны сенсора по воздействием разности давлений $\Delta P = P1 P2$.

Емкость конденсатора расчитывается по формуле: $C = \varepsilon S/d$, где S – площадь обкладки конденсатора, d - расстояние между обкладками, ε - диэлектрическая проницаемость.

Таким образом, емкость CH и CL равняется:

CH =
$$\varepsilon S/(d/2 + \Delta d)$$
 (1)

$$CL = \varepsilon S/(d/2 - \Delta d)$$
 (2)

При малых отклонениях чувствительной мембраны, можно считать, что отклонение Δd мембраны прямо пропорционально разности давлений ΔP :

$$\Delta P = \alpha \Delta d \tag{3}$$

Подставив (1) и (2) в выражение (CL – CH)/(CL + CH) и имея ввиду (3) получим, что коэффициент пропорциональности $\alpha = 2/d$.

Таким образом $\Delta P = 2\Delta d/d$

1.4.3. Блок-схема аппаратной части датчика представлена на рисунке 4.

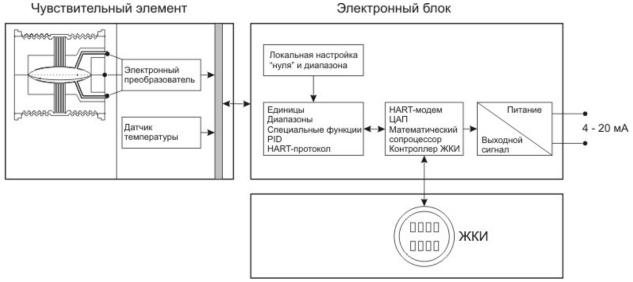


Рис. 4

Процессор

Осуществляет управление датчиком, линеаризацию выходного сигнала, термокомпенсацию сенсора. Данные хранятся во внешней памяти. Процессор имеет как энергозависимую память для хранения временных данных, так и энергонезависимую для хранения таких данных как калибровка, конфигурация датчика, его идентификационные данные.

ШΑП

Формирует аналоговый выходной сигнал с разрешением 14 бит.

Осциллятор

Осциллятор генерирует частоту, как функцию емкости сенсора

Локальная настройка

Позволяет локально настраивать датчик при помощи двух магнитноактивируемых переключателей.

Блок-схема программной части датчика представлена на рисунке 5.

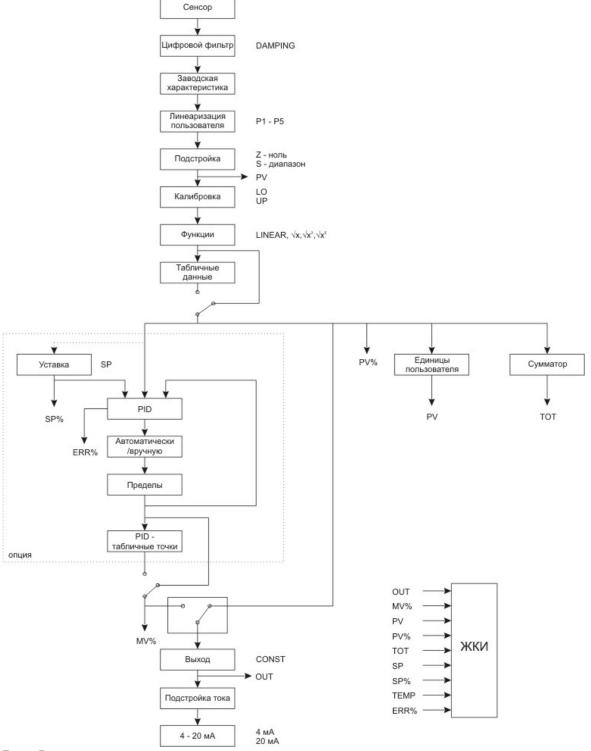


Рис. 5

Ниже приведено описание и предназначение каждого блока:

Заводская характеристика

Емкость и температура на основании заводских характеристик преобразуются в измеряемое давление.

Цифровой фильтр

Цифровой фильтр с настраиваемой временной константой (в секундах) предназначен для сглаживания быстроменяющихся сигналов. Временная константа — это время достижения выходным сигналом величины соответствующей 63.2% от скачкообразного изменения давления, принятого за 100%.

Линеаризация пользователя

Для корректировки характеристики датчика по 5 точкам.

Подстройка

Корректировка "нуля" и диапазона. Нужна, например, для корректировки долговременного смещения выходного сигнала или устранения дополнительной погрешности вызванной установкой и/или статическим давлением.

Калибровка

Используется для установки НПИ/ВПИ соответствующего 4 мА/20 мА.

Функции

В зависимости от приложения, выходная характеристика датчика может иметь: линейный вид (измерение давления, уровня), квадратичный, квадратичный третьей и пятой степени (для измерения потока)

Табличные данные

По табличным данным ставится соответствие между входным давлением и выходным сигналом. Выходной сигнал интерполируется по заданным точкам (от 2-х до 16 точек). Давление и выходной сигнал задаются в % от диапазона. К примеру, это требуется для пересчета уровня в массу или объем жидкости, а в расходометрии для коррекции изменения числа Рейнольдса.

Уставка

Желаемое значение измеряемой величины в режиме контроллера - SP.

PID

Вычисляется разность между измеряемой величиной (PV) и желаемой (SP). На основании этой разницы в соответствии с заложенным алгоритмом вычисляется управляющая величина (MV). Алгоритм также может задавать пользователь (до16 точек) - в этом случае на индикаторе датчика отображается знак F(x).

Автоматически/вручную

Выбирается режим работы датчика в режиме контроллера.

Выход

Формирует ток пропорциональный измеряемой (PV) или управляющей величине (MV) величине. Значение тока ограничено снизу 3.6 мА и 21 мА сверху.

Подстройка тока

Предназначена для корректировки значения токового выходного сигнала в случае его отличия от истинного.

Елинины пользователя

Преобразует измеряемую величину в заданные пользователем единицы. Например, это требуется для пересчета разности давлений в поток или уровня в массу или объем.

Суммирование

Используется в расходометрии для учета переданного или полученного объема или массы.

1.4.4. Дисплей

Встроенный дисплей (опция) позволяет отображать одну или две (например, измеряемое давление и выходной ток) величины. При выборе двух величин каждая из них отображается с интервалом в 3 секунды. Помимо числовых значений величин, дисплей отображает их единицы измерения, а также режимы работы датчика и системные сообщения.

Жидкокристаллический дисплей включает в себя $4\frac{1}{2}$ -значное цифровое поле и 5-значное буквенно-цифровое.

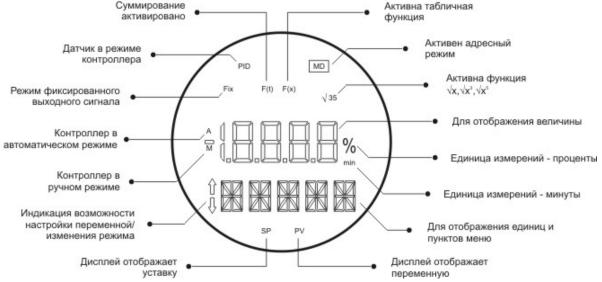


Рис. 6. Дисплей датчика

Системное сообщение	Описание
CHAR	Отображается в режиме калибровки
SAT / Unit	Выходной ток зафиксирован равным 3.6 или 21 мА
CH и/или CL и SFAIL	Повреждена одна или обе стороны чувствительного элемента
FAIL and INIT	Ошибка инициализации чувствительного элемента (ошибка
	памяти ЧЭ или нарушена связь с ЧЭ)

Настройка датчика DMD 331-A-S может быть осуществлена как локально (при помощи "магнитного" карандаша), так и удаленно посредством HART-модема или HART-коммуникатора.

1.5. Локальная настройка

В случае, если датчик оснащен дисплеем, возможно осуществлять практически полноценную (за исключением нескольких функций) настройку датчика при помощи магнитного "карандаша". В случае, если дисплей отсутствует, локально возможно настроить только НПИ и ВПИ при наличии опорного давления.

Существуют два режима локальной настройки датчика: простой и полноценный. Выбор между режимами настройки осуществляется при помощи перемычек находящихся за крышкой над дисплеем (см. рис. 7)

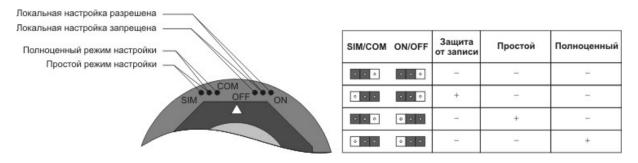


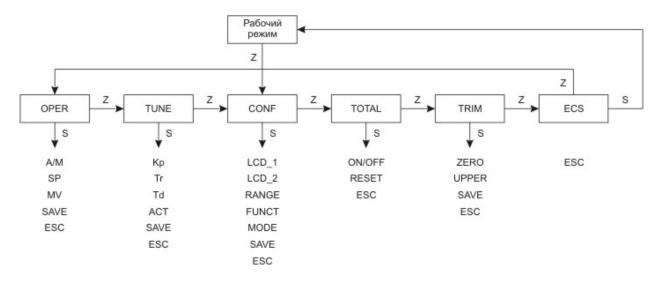
Рис. 7. Режимы локальной настройки в зависимости от расположения перемычек

Под табличкой датчика находятся 2 глухих отверстия закрытых резиновыми заглушками. Отверстия помечены буквами "Z" и "S". В корпусе датчика, под отверстиями находятся 2 магнитно-активируемых переключателя (см. рис. 8).

Рис. 8. Расположение элементов локальной настройки

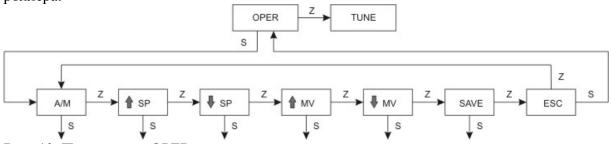
Последствия активации "Z" и "S" в зависимости от режима настройки приведены в таблице:

Пойотоно		им настройки	Полноценный	
Режим датчика		Режим контроллера	режим настройки	
z	Установка НПИ	Переключение между пунктами меню OPERATION и TOTAL	Движение по пунктам меню	
s	Установка ВПИ	Активация выбранного пункта меню/функции	Активация выбранного пункта меню/функции, изменение значения	


При изменении какого-либо значения, например LRV (НПИ), необходимо после выбора соответствующего пункта меню, поместить магнитный карандаш в "S". Значение будет изменяться в направлении "указанном" стрелкой слева от поля для отображения единиц и пунктов меню. Причем, скорость изменения будет непрерывно возрастать. Для возврата к первоначальной скорости изменения стоит извлечь карандаш и снова поместить в отверстие "S".

ПРОСТОЙ РЕЖИМ НАСТРОЙКИ, УСТАНОВКА НПИ/ВПИ.

- Приложите давление, соответствующее НПИ/ВПИ.
- Дождитесь стабилизации давления.
- Поместите магнитный карандаш в отверстие Z/S.
- Подождите 2 секунды, Выходной сигнал должен установиться равным 4 мА/20 мА.
- Удалите магнитный карандаш.



ПОЛНОЦЕННЫЙ РЕЖИМ НАСТРОЙКИ

Рис. 9. Меню датчика DMD 331-A-S в режиме ручной настройки

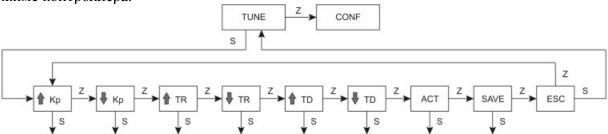

<u>OPER</u> – пункт меню, в котором устанавливаются параметры работы датчика в режиме контроллера.

Рис. 10. Пункт меню OPER

- А/М переключение между автоматическим/ручным режимом работы датчика.
- SP задание значения уставки.
- MV задание управляющей величины.

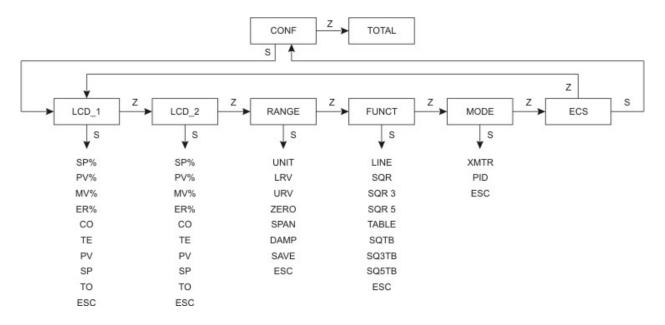
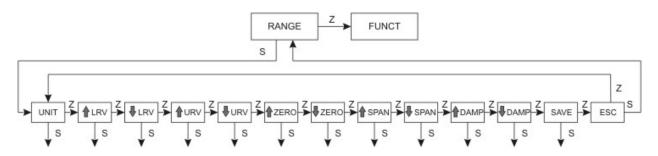

 \underline{TUNE} — пункт меню, в котором устанавливаются параметры алгоритма работы датчика в режиме контроллера.

Рис. 11. Пункт меню TUNE

- **Кр** усиление: 0 100.
- **Tr** интегральное время: 0 999 мин.
- **Td** дифференциальное время: 0 999 сек.
- \bullet ACT направление изменения управляющей величины в зависимости от давления: D прямое, R обратное.

<u>CONF</u> – пункт меню, в котором устанавливаются величины отображаемые дисплеем (LCD_1, LCD_2), характеристика (RANGE), функция выходного сигнала (FUNCTION) и осуществляется переход между режимами датчика и контроллера (MODE).

Рис. 12. Пункт меню CONF


• LCD 1, LCD 2

Отображаемая величина	Описание
SP% ^(*)	Уставка, %
PV%	Измеряемая величина, %
$MV\%^{(*)}$	Управляющая величина, %
ER% ^(*)	PV% - SP%, %
CO	Выходной сигнал, мА
TE	Температура сенсора, °С
SP ^(*)	Уставка в установленных единицах
PV	Измеряемая величина в установленных единицах
ТО	Сумма
	Отображение деактивировано (только для LCD_2)
ESC	Переход к след. пункту меню

 $[\]frac{r}{r}$ — данные величины отображаются, только если датчик находится в режиме контроллера.

• RANGE – установка характеристики датчика

Рис. 13. Пункт меню RANGE

- UNIT – установка единиц измерения

Отображаемая	Фактор пере-	Описание
величина	счета	
InH2O	1	Дюйм водного столба при 20 °C
InHg	0.0734241	Дюйм ртутного столба при 0 °C
ftH2O	0.0833333	Фут водного столба при 20 °C
mmH2O	25.4	Миллиметр водного столба при 20 °C
mmHg	1.86497	Миллиметр ртутного столба при 0 °C
psi	0.0360625	Фунт на квадратный дюйм
bar	0.00248642	бар
mbar	2.48642	мбар
g/cm2	2.53545	r/cm ²
k/cm2	0.00253545	кг/см ²
Pa	248.642	Па
kPa	0.248642	кПа
mH2O	0.0254	Метр водного столба при 20 °C
atm	0.00245391	Атмосфера
ESC		Переход к след. пункту меню

- LRV (URV) – Установка НПИ (ВПИ) без опорного давления

На дисплее, устанавливаемое значение НПИ (ВПИ) отображается в установленных единицах (пункт меню UNIT).

- ZERO (SPAN) Установка НПИ (ВПИ) с опорным давлением.
- Приложите давление, соответствующее НПИ (ВПИ).
- Дождитесь стабилизации давления.
- Активируйте пункт меню изменяющий устанавливаемое значение в требуемом направлении
- Поместите магнитный карандаш в отверстие "S" и установите значение токового выходного сигнала соответствующее НПИ (ВПИ). Выходной сигнал отображается в %, 0% соответствует 4 мA, 100% соответствует 20 мA.

- **DAMP** установка времени реакции время достижения выходным сигналом величины соответствующей 63.2% от скачкообразного изменения давления, принятого за 100%. Диапазон изменения от 0 до 128 сек.
- FUNCT установка функции выходного сигнала

Отображаемая величина	Описание
LINE	$Y_{_{6bix}} = P$
SQR	$Y_{\rm GbIX} = 10\sqrt{P}$
SQR3	$Y_{\rm GbIX} = 0.1\sqrt{P^3}$
SQR5	$Y_{\text{\tiny GbLX}} = 0.001\sqrt{P^5}$
TABLE	В соответствии с таблицей (16 точек)
SQTB	$Y_{_{6bix}} = 10\sqrt{P} + $ табличные данные (16 точек)
SQ3TB	$Y_{_{6blX}} = 0.1\sqrt{P^3} + $ табличные данные (16 точек)
SQ5TB	$Y_{_{6blX}} = 0.001\sqrt{P^5} + $ табличные данные (16 точек)
ESC	Переход к след. пункту меню

• MODE – выбор режима работы

Отображаемая величина	Описание
XMTR	Режим датчика
PID	Режим контроллера
ESC	Переход к след. пункту меню

<u>TOTAL</u> – пункт меню, в котором включается/выключается (ON/OFF) суммирование потока в единицах массы или объема. Обнуление счетчика (RESET)

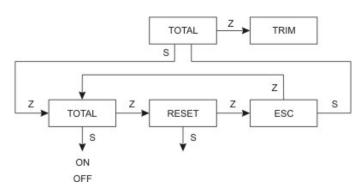


Рис. 14. Пункт меню ТОТАL

<u>TRIM</u> – пункт меню, в котором корректируется характеристика датчика (**ZERO, LOWER, UPPER**).

Рис. 15. Пункт меню TRIM

1.6. Удаленная настройка по HART-протоколу

Удаленная настройка параметров датчика DMD 331-A-S осуществляется посредством HART-модема или HART-коммуникатора.

- Считывание идентификационных данных датчика
- Настройка характеристики датчика
- Корректировка выходного аналогового сигнала
- Выбор единиц измерения
- Установка функции выходного сигнала
- Линеаризация
- Суммирование
- Установка режимов работы датчика в режиме контроллера.

Manufacturing Data and Identification – Идентификационные данные датчика

ТАС – 8-и значное буквенноцифровое поле для идентификации типа датчика.

DESCRIPTOR – 16-и значное буквенноцифровое поле для дополнительной информации о датчике. Может использоваться, например, для хранения информации о месте установки датчика.

DATE – для хранения даты. Это может быть, либо дата прошедшей поверки, либо дата следующей поверки. Формат $\mathcal{I}/M/\Gamma$.

MESSAGE - 32-х значное буквенноцифровое поле для дополнительной информации о датчике. Может использоваться, например, для хранения информации о сотруднике произведшем калибровку и установку, о некоторых особенностях прибора.

FLANGE TYPE – тип установленных фланцев: традиционные, копланарные, под выносные мембраны.

FLANGE MATERIAL – материал фланцев: углеродистая сталь, нержавеющая сталь, сплавы Hastelloy C или Monel.

O-RING MATERIAL – материал уплотнений: PTFE (тефлон), Viton, NBR, EPDM.

DRAIN/VENT MATERIAL - материал дренажных клапанов: углеродистая сталь, нержавеющая сталь, сплавы Hastelloy C или Monel.

REMOTE SEAL TYPE – тип выносных мембран: фланец, резьбовое присоединение, специальное исполнение...

REMOTE SEAL FLUID – заполняющая жидкость выносных мембран: силиконовое масло, пищевое масло, глицериново-водяная смесь...

REMOTE SEAL QUANTITY – количество выносных мембран: одна, две, нет выносных мембран.

SENSOR FLUID - заполняющая жидкость сенсора: силиконовое масло, специальная жидкость...

SENSOR ISOLATING DIAPHRAGM – материал мембраны сенсора: нержавеющая сталь, тантал, сплавы Hastelloy C или Monel.

SENSOR TYPE – тип сенсора.

SENSOR RANGE – номинальный диапазон сенсора. Отображается в единицах заданных пользователем.

Primary Variable Trim - Pressure - Корректировка характеристики

Данный пункт предназначен для корректировки характеристики датчика. Необходимость в этом может возникнуть в случае изменения характеристики датчика из-за монтажа отличного от нормального, перегрузки, воздействия на сенсор температур превышающих допустимые. Кроме того, с течением времени характеристика датчика может измениться в пределах значений указанных в п. 1.2.10, табл. 2.

LOWER TRIM – коррекция характеристики в НПИ датчика.

UPPER TRIM – коррекция характеристики в ВПИ датчика.

ZERO TRIM — функция аналогична **LOWER TRIM**, за исключением того, что предполагается равенство давлений в обеих камерах датчика при ее активации. При ее использовании не требуется вводить конкретное значение давления в память датчика.

CHARACTERIZATION — функция предназначена для коррекции нелинейности. Для этого необходимо подать давление и посредством HART-коммуникатора "проинформировать" прибор о его значении. Максимальное количество точек — 5. На дисплее при этом отображается надпись CHAR. Рекомендуемый класс точности задатчика давления не хуже 0.03%, иначе погрешность датчика существенно увеличится.

Primary Variable Trim - Current - Корректировка аналогового выходного сигнала

4 mA TRIM – коррекция аналогового выходного сигнала соответствующего НПИ **20 mA TRIM** – коррекция аналогового выходного сигнала соответствующего ВПИ

- Присоедините к датчику высокоточный амперметр
- Выберите 4 mA TRIM (20 mA TRIM) и приложите давление, соответствующее НПИ (ВПИ).
- Дождитесь стабилизации выходного сигнала.
- Запишите значение выходного сигнала измеренное амперметром в память прибора.

Transmitter Adjustment to the Working Range – Перенастройка рабочего диапазона

Существуют две возможности перенастройки рабочего диапазона датчика DMD 331-A-S.

- CALIBRATION WITH REFERENCE перенастройка с опорным давлением.
- CALIBRATION WITHOUT REFERENCE перенастройка без опорного давления.

Существуют некоторые ограничения на перенастройку:

- Рекомендуется, чтобы установленные НПИ и ВПИ не выходили за рамки номинальных пределов измерения. Для датчика с номинальным диапазоном $P_{\rm HД} = 50~\rm k\Pi a$ этими пределами являются -50 кПа и 50 кПа. Допускается превышение установленных НПИ и ВПИ над номинальными на 24%, при некотором увеличении погрешности.

Масштаб перенастройки диапазона не должен превышать значений указанных в таблице 3.

При установке обратной характеристики датчика (НПИ соответствует 20 мA, а $B\Pi \text{И} - 4 \text{ мA}$), вышеозначенные ограничения должны соблюдаться. Поэтому, предварительно стоит установить НПИ отличным от ВПИ и желаемого НПИ. Затем следует установить ВПИ, а затем НПИ.

Engineering Unit Selection – выбор единиц измерения.

В датчике предусмотрена возможность выбора единиц измерения. Поскольку DMD 331-A-S оснащен $4\frac{1}{2}$ разрядным жидкокристаллическим дисплеем, то максимальное отображаемое значение – это 19999. Таким образом, при выборе единиц измерения, следует позаботиться о том, чтобы значение, которое должно отобразиться на дисплее не превышало 19999. В таблице 7 приведён список возможных единиц давления.

Таблина 7

Отображаемая	Фактор	Описание	
величина	пересчета		
InH2O	1	Дюйм водного столба при 20 °C	
InHg	0.0734241	Дюйм ртутного столба при 0 °C	
ftH2O	0.0833333	Фут водного столба при 20 °C	
mmH2O	25.4	Миллиметр водного столба при 20 °C	
mmHg	1.86497	Миллиметр ртутного столба при 0 °C	
psi	0.0360625	Фунт на квадратный дюйм	
bar	0.00248642	бар	
mbar	2.48642	мбар	
g/cm2	2.53545	r/cm ²	
k/cm2	0.00253545	кг/cm ²	
Pa	248.642	Па	
kPa	0.248642	кПа	
mH2O	0.0254	Метр водного столба при 20 °C	
atm	0.00245391	Атмосфера	

В приложениях, где DMD 331-A-S используется не для измерения давления, но величин связанных с ним, например, потока, уровня, массы, объема, имеется возможность ввести единицы измерения пользователя.

0 % - для введения значения, которое будет отображаться на дисплее при давлении равном НПИ. **100** % - для введения значения, которое будет отображаться на дисплее при давлении равном ВПИ.

Пример: Датчик DMD 331-A-S присоединен к вертикальной цилиндрической емкости 10-и метров высотой и 2-х метров в диаметре. Датчик находится на 250 мм ниже нулевого уровня. Необходимо получать информацию об объеме воды, находящейся в емкости. Объем емкости составляет 31.4 м³. Таким образом, при давлении 0.25 м.вд.ст датчик должен отображать 0 м³, при давлении 10.25 м.вд.ст датчик должен отображать 31.4 м³.

<u>Transfer Function for Flow Measurement</u> – установление выходной характеристики и/или линеаризации для измерения потока/объема/массы.

SQRT - квадратичная

 $Y_{e_{\text{bly}}} = 10\sqrt{P}$, где $Y_{e_{\text{bly}}}$ и P выражено в % от диапазона

Характеристика квадратична выше точки отсечки и линейна ниже данной точки (см рис. 1). По умолчанию точка отсечки установлена равной 6% от диапазона измерения.

SQRT**3 - квадратичная, третьей степени

$$Y_{_{6blx}} = 0.1\sqrt{P^3}$$
, где $Y_{_{6blx}}$ и P выражено в % от диапазона

SQRT**5 - квадратичная, пятой степени

$$Y_{\text{\tiny fiblx}} = 0.001 \sqrt{P^5}$$
, где $Y_{\text{\tiny fiblx}}$ и P выражено в % от диапазона

TABLE - табличные данные

При выборе данного типа выходного сигнала, выходной сигнал будет соответствовать кривой заданной в таблице. Это требуется для пересчета давления жидкости в резервуаре в объем или массу в случае нелинейной зависимости последних от давления. Максимальное количество задаваемых точек – 16. Для уменьшения погрешности рекомендуется задавать больше точек в наименее линейных участках зависимости выходного сигнала от давления.

SQRT & TABLE – квадратичная и табличные данные

SQRT**3 & TABLE - квадратичная третьей степени и табличные данные

SQRT**5 & TABLE - квадратичная пятой степени и табличные данные

Table Points – табличные данные.

При выборе этой опции, по табличным данным ставится соответствие между входным давлением и выходным сигналом. Выходной сигнал интерполируется по заданным точкам (от 2-х до 16 точек). Давление и выходной сигнал задаются в % от диапазона. К примеру, это требуется для пересчета уровня в массу или объем жидкости, а в расходометрии для коррекции изменения числа Рейнольдса. Пример подобной таблицы приведен ниже.

№	Уровень, м.вд.ст	X, %	Масса, т	Y, %
1	0.25	0	0	0
2	0.45	10	0.98	5.22
3	0.75	25	2.9	15.38
4	0.957	35.36	4.71	25
5	1.05	40	7.04	37.36
6	1.15	45	8.23	43.65
7	1.25	50	9.42	50
•••		•••	•••	•••
16	2.25	100	18.85	100

Totalization Configuration

При использовании датчика DMD 331-A-S для измерения расхода, необходима информация о прошедшем объеме или массе измеряемой среды. Максимальная величина отображаемая дисплеем – 99.999.999.

Формула по которой подсчитывается объем (масса):

$$V_{tot} = \frac{1}{S} \int Q_{\text{max}} PV(\%) dt$$
 (1)

MAXIMUM FLOW RATE - Qmax

Для задания максимального потока соответствующего ВПИ и выраженного в единицах объема или массы. PV(%) – измеряемая величина выраженная в % от ВПИ.

TOTALIZATION INCREMENT - S

Изменение отображаемого значения расхода на единицу происходит после протекания S единиц объема (массы).

TOTALIZATION UNIT

Для задания единиц, в которых измеряется расход.

INITIALIZATION

Обнуление расхода.

ENABLING / DISABLING

Активация / деактивация измерения расхода. Когда на дисплее отображается расход, одновременно высвечивается значок "F(t)".

PID Controller Configuration

Датчик DMD 331-A-S может работать в режиме PID-контроллера.

Алгоритм работы:

$$MV(\%) = Kp \left(e + \frac{1}{Tr} \int e dt + Td \frac{dPV}{dt} \right)$$
 (2), где

e(t) = PV - SP (прямое действие), SP- PV (обратное действие)

SP – Уставка

PV – Измеряемая величина

Кр – Коэффициент

Tr – Интегральное время

Td – Дифференциальное время

MV – Управляющая величина.

По умолчанию, 0% MV соответствует выходному сигналу 4 мA, 100% MV соответствует выходному сигналу 20 мA.

SAFETY LIMITS

Задание управляющей величины в случае выхода датчика из строя (Safety Output), максимальной скорости изменения управляющей величины (Output Rate) в %/с, верхнего (Upper) и нижнего (Lower) предела управляющей величины.

TUNING

Задание параметров алгоритма работы датчика в режиме контроллера.

- **-Кр** усиление: 0 100.
- **-Tr** интегральное время: 0 999 мин.
- -**Td** дифференциальное время: 0 999 сек.
- **-**ACT направление изменения управляющей величины в зависимости от давления: D прямое, R обратное.

OPERATION MODES

Задание прямого или обратного действия котроллера (Control Action). В первом случае, при росте давления происходит рост выходного сигнала в соответствии с формулой (2), во втором случае, рост давления приводит к уменьшению выходного сигнала. Задание режима

117105, г. Москва, Варшавское ш., д.37A Тел.: (495) 380-16-83 www.bdsensors.ru Факс: (495) 380-16-81 sales@bdsensors.ru

контроллера (Power On), после отключения питания и повторного его включения – в ручном, автоматическом или в режиме в котором находился контроллер до отключения питания.

TABLE

В случае активации опции "табличные данные", управляющая величина будет изменяться в соответствии с табличными данными.

Equipment Configuration

INPUT FILTER

Задание времени реакции – достижение выходным сигналом величины соответствующей 63.2% от скачкообразного изменения давления, принятого за 100%. Собственное время реакции датчика составляет 200 мс. Диапазон задаваемых значений от 0 до 128 секунд.

BURN OUT

Выбор значения выходного сигнала (3.6 или 21 мА) при выходе датчика из строя, в режиме датчика. Если датчик находится в режиме контроллера, то выходной сигнал будет равен величине заданной в пункте Safety Output.

ADDRESSING

Задание адреса датчика в HART сети. Значение адреса может задаваться в пределах от 0 до 15. Если значение адреса задано в пределах от 1 до 15, выходной сигнал фиксируется на уровне 4 мА в режиме датчика, дисплей отображает надпись "MDROP". В режиме контроллера выходной сигнал (управляющая величина) изменяется в соответствии с заданным алгоритмом и безотносительно к установленному адресу По умолчанию, значение адреса равно 0.

DISPLAY INDICATION

Дисплей датчика DMD 331-A-S имеет 3 области индикации: область для индикации служебных символов, 4 ½ разрядный дисплей для отображения цифровых значений, 5 разрядный буквенноцифровой дисплей для индикации единиц измерения и пунктов меню.

Попеременно дисплей может отображать до 2-х значений, например выходной сигнал и

темпе	патупу	сенсора.	
1 CIVIII C	parypy	cerreopa.	

Отображаемая величина	Описание
PV%	Измеряемая величина, %
PV	Измеряемая величина в установленных единицах
$MV\%^{(*)}$	Управляющая величина, %
TEMP	Температура сенсора, °С
CO	Выходной сигнал, мА
TOTAL	Расход
SP% ^(*)	Уставка, %
$\mathrm{SP}^{(*)}$	Уставка в установленных единицах
ER% ^(*)	PV% - SP%, %
S/INDIC	Отображение деактивировано

^{(*) –} данные величины отображаются, только если датчик находится в режиме контроллера.

1.7. Обеспечение взрывозащищённости

Обеспечение искробезопасности датчика с видом взрывозащиты "искробезопасная электрическая цепь" достигается путём ограничения входных токов (I_i ≤ 93 мA) и напряжения

 $(U_i \le 28~B)$, а также путём выполнения конструкции датчика в соответствии с требованиями ГОСТ Р 51330.10. Ограничение тока и напряжения в электрических цепях датчика до искробезопасных значений достигается путем обязательного использования датчика в комплекте с соответствующими барьерами или блоками питания, имеющими вид взрывозащиты "искробезопасная электрическая цепь" с уровнем взрывозащиты "ia" для взрывоопасных газовых смесей подгруппы IIC по ГОСТ Р 51330.0.

Обеспечение взрывозащищённости датчиков с видом взрывозащиты "взрывонепроницаемая оболочка" достигается путем размещения электрических частей во взрывонепроницаемой оболочке по ГОСТ Р 51330.1, исключающей передачу взрыва внутри датчика во внешнюю взрывоопасную среду.

1.8. Маркировка

- 1.8.1. На шильдике, прикрепленном к корпусу датчика, нанесены следующие надписи:
- товарный знак предприятия-изготовителя;
- модель датчика;
- условное обозначение датчика в соответствии с Приложением А;
- диапазон измерения с указанием единиц измерения;
- серийный номер датчика;
- выходной сигнал;
- маркировка взрывозащиты.
- 1.8.2. На потребительскую тару датчика наклеена этикетка, на которую нанесены следующие надписи.
- модель датчика;
- диапазон измерения с указанием единиц измерения;
- серийный номер датчика;

1.9. Упаковка

- 1.9.1 Упаковка датчика обеспечивает его сохранность при транспортировании и хранении.
- 1.9.2. Датчик уложен в потребительскую тару коробку из пенопласта.
- 1.9.3. Штуцеры датчика закрываются колпачками, предохраняющими мембраны и резьбу от загрязнения и повреждения. Штуцеры датчиков кислородного исполнения перед упаковыванием обезжириваются.

2. Использование по назначению

2.1. Общие указания

2.1.1. При получении датчика проверьте комплектность в соответствии с паспортом. В паспорте следует указать дату ввода датчика в эксплуатацию. В паспорте рекомендуется делать отметки, касающиеся эксплуатации датчика: данные периодического контроля, данные о поверке, о имевших место неисправностях и.т.д.

Рекомендуется сохранять паспорт, так как он является юридическим документом при предъявлении рекламаций предприятию-изготовителю.

2.2. Эксплуатационные ограничения

- 2.2.1. Присоединение и отсоединение датчиков от магистралей, подводящих давление измеряемой среды, должно производиться после закрытия вентиля отсекающего датчик от процесса и сброса давления в рабочей камере до атмосферного. Не применяйте силу при установке датчика.
- 2.2.2. Запрещается устанавливать датчик в замкнутый объём, полностью заполненный жидкостью, так как это может привести к повреждению мембраны.
- 2.2.3. Температура хранения, окружающей и измеряемой среды не должна выходить за пределы диапазонов, указанных в п. 1.2.10.
- 2.2.4. В диапазоне отрицательных температур необходимо исключить
- накопление и замерзание конденсата в рабочих камерах и внутри соединительных трубопроводов для газообразных сред;
- замерзание, кристаллизацию среды или выкристаллизовывание из нее отдельных компонентов для жидких сред.
- 2.2.5. Параметры вибрации и механических ударов при эксплуатации не должны превышать значений указанных в п. 1.2.11, 1.2.12.
- 2.2.6. Не допускается применение датчиков для измерения давления сред, агрессивных по отношению к материалам, контактирующим с измеряемой средой. Непосредственно с измеряемой средой контактирует штуцер, мембрана и уплотнение.

Материал фланцев датчика и мембран – сталь нержавеющая 03Х17Н13М2. Возможные варианты материала мембраны (помимо нержавеющей стали 03Х17Н13М2) – сталь различных марок, тантал. В Приложении А приведены возможные типы уплотнений.

2.3. Меры безопасности

- 2.3.1. Не допускается эксплуатация датчиков в системах, статическое давление в которых может превышать значения указанные в п. 1.2.1.
- Эксплуатация взрывозащищенных датчиков должна производиться согласно требованиям главы 7.3 ПУЭ и других нормативных документов, регламентирующих применение электрооборудования во взрывоопасных условиях.
- 2.3.3. Присоединение и отсоединение датчиков от магистралей, подводящих давление измеряемой среды, должно производиться после закрытия вентиля отсекающего датчик от процесса и сброса давления в рабочих камерах до атмосферного.
- 2.3.4. Перед началом эксплуатации датчика для измерения давления кислорода, штуцер и его внутренняя полость должны быть обезжирены.

2.4. Монтаж и демонтаж. Обеспечение взрывозащищённости при монтаже

2.4.1. Типы механических присоединений датчика приведены в Приложении А.

- 2.4.2. Схемы внешних электрических соединений датчика приведены в Приложении В.
- 2.4.3. При монтаже датчиков, помимо настоящего руководства, следует руководствоваться следующими документами:
- ПЭЭП (гл. 3.4);
- ПУЭ (гл. 7.3);
- ΓΟCT P 51330.0;
- ΓΟCT P 51330.1.
- ΓΟCT P 51330.10

Перед монтажом датчик должен быть осмотрен на предмет отсутствия повреждений корпуса взрывонепроницаемой оболочки и наличия уплотнительных колец крышек. При использовании датчика во взрывоопасной зоне должен использоваться соответствующий кабельный ввод.

2.4.4. Соединительные линии должны иметь односторонний уклон (не менее 1:10) от места отбора давления вверх к датчику, если измеряемая среда — газ, и вниз к датчику, если измеряемая среда жидкость. Если это невозможно, при измерении давления газа в нижних точках соединительных линий следует устанавливать отстойные сосуды, а при измерении давления жидкости в наивысших точках — газосборники. На рисунке 16 приведены рекомендуемые схемы монтажа датчика давления в зависимости от измеряемой среды.

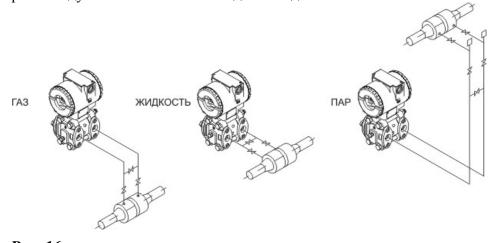
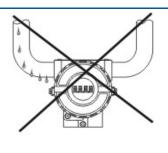



Рис. 16

- 2.4.5. Отборные устройства для установки датчиков желательно монтировать на прямолинейных участках, на максимально возможном удалении от насосов, запорных устройств, колен, компенсаторов и других гидравлических устройств. Особенно не рекомендуется устанавливать датчик перед запорным устройством в трубопроводах, если измеряемая среда жидкость.
- 2.4.6. На нулевое значение выходного сигнала датчика с диапазоном 50 кПа и меньше, существенное влияние оказывает положение продольной оси датчика. На предприятии-изготовителе, настройка нулевого значения выходного сигнала осуществляется в положении, когда ось, проходящая через центры мембран перпендикулярна вектору ускорения свободного падения. При заказе датчиков с вышеуказанным диапазоном, рекомендуется также указывать положение, в котором датчики будут эксплуатироваться, если оно отличается от вышеуказанного.
- 2.4.7. При прокладке питающих и сигнальных линий следует исключить возможность попадания конденсата на разъем или кабельный ввод датчика (см. рис 17.)

НЕПРАВИЛЬНО

Рис. 17

2.4.8. Максимальная длина кабеля для датчиков с HART-протоколом рассчитывается по следующей формуле: $L_{\max} = \frac{65\cdot 10^6}{R_{_V}\cdot C_{_V}} - \frac{40\cdot 10^3}{C_{_V}} \, \textit{м} \;\;,$

где R_{V} - суммарное сопротивление кабеля и нагрузки, Ом;

 C_{ν} - емкость кабеля, п Φ /м.

Пример: $R_V = 250 \text{ OM}, C_V = 133 \text{ п}\Phi/\text{м}$

 $L_{\rm max} = 1654\,$ метра. Таким образом, длина кабеля не должна превышать 1654 метра.

3. Техническое обслуживание

- 3.1. К техническому обслуживанию допускаются лица изучившие настоящее руководство.
- 3.2. Техническое обслуживание датчика заключается в периодической поверке, очистке рабочей полости, а также, сливе из нее конденсата или удалении воздуха.
- 3.3. Штуцеры датчиков, предназначенных для измерения давления кислорода должны подвергаться обезжириванию, особенно после прохождения поверки.
- 3.4. Метрологические характеристики датчика соответствуют заявленным значениям в течении межповерочного интервала, при соблюдении потребителем правил хранения, транспортировки и эксплуатации, указанных в настоящем руководстве.
- 3.5. На датчик, отказавший в пределах гарантийного срока, составляется рекламационный акт. Рекламации на датчик с нарушенными пломбами и дефектами, вызванными нарушениями правил эксплуатации, транспортировки и хранения, не принимаются.

4. Хранение и транспортировка

- 4.1. Датчики могут храниться в транспортной таре с укладкой в штабеля до 5 упаковок по высоте и без упаковки на стеллажах.
- 4.2. Условия хранения в соответствии с ГОСТ 15150.
- 4.3. Датчики в индивидуальной упаковке транспортируются любым видом закрытого транспорта в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта.

ПРИЛОЖЕНИЕ А. Условное обозначение

Модель	Описание			
DMD 331-A-S	Датчик разности давлений			
Код	Диапазон		П	
	номинальн	минималь	Давление статическое максимальное	
LA	ый -11 кПа	ный 0,05 кПа	0,5 МПа	
LA LB	-11 кна -55 кПа	0,03 кПа	8 МПа	
LC	-5050 кПа	0,13 кпа	o wii a	
LD	-250250 кПа	2,08 кПа	16 МПа	
LF	-25002500 кПа	20,83 кПа	10 WIIIa	
HC	-5050 кПа	0,42 кПа		
HD	-250250 кПа	2,08 кПа		
HF	-2,52,5 МПа	20,83 кПа	32 МПа	
НН	-2525 МПа	0,21 MΠa		
Код	Материал м		Заполняющая жидкость	
11	Сталь нержаве		Силиконовое масло (1)	
13	Сталь нержаве		Фторуглеродное масло ⁽²⁾	
H1	Hastelloy		Силиконовое масло (1)	
H3	Hastelloy C-276		Фторуглеродное масло ⁽²⁾	
M1	Monel 4		Силиконовое масло ⁽¹⁾ (3)	
T1	Тантал		Силиконовое масло (1) (3)	
T3	Танта		Фторуглеродное масло (2) (3)	
1C	Сталь нержаве		Галокарбон $4.2^{(2)(3)}$	
НС	Hastelloy		Галокарбон 4.2 ^{(2) (3)}	
TC	Танта		Галокарбон $4.2^{(2)(3)}$	
Код	Материал фланцев, адаптеров и крепежных деталей			
1	Сталь нержавеющая 316 L			
С	Сталь углеро		апаны из стали 316 L)	
Н	-	Hastelloy C-27	,	
M	Monel 400			
P	Сталь нержа	авеющая 316L с вставк	ами из PVDF ^{(2) (4) (5) (6)}	
Код	Материал уплотнений			
0	Без уплотнений (только при использовании выносных мембран)			
1	FKM			
3	EPDM			
5	NBR			
8	PTFE			
Код	Положение дренажных клапанов			
0	Без дренажных клапанов			
U	Верхнее			
D	Нижнее			
A	Напротив присоединения к процессу			
Код	Дисплей			
0	Дисплей отсутствует			
M	ЖК дисплей			

Код	Механическое присоединение		
0	½ -18 NPT без адаптера		
1	½ - 14 NPT с адаптером		
5	½ - 14 NPT с вставками из PVDF) (4) (5)		
6	$^{1}/_{4}$ -18 NPT с малым размером фланца $^{(2)}$ (4) (7) (8)		
8	Малый объем фланца для монтажа (под сварку) выносных мембран ^{(4) (7)}		
Код	Электрическое присоединение		
КОД	(кабельный ввод не входит в комплект поставки)		
N	два отверстия под каб. ввод ½ - 14 NPT + одна заглушка		
M	два отверстия под каб. ввод М $20x1.5 + $ одна заглушка		
P	два отверстия под каб. ввод Pg 13.5 + одна заглушка		
G	два отверстия под каб. ввод 3/4 - 14 NPT (с переходником с 1/2 - 14		
	NPT из нерж. стали 316) $^{(12)}$ + одна заглушка		
Код	Возможность локальной настройки		
1	Есть (магнитный карандаш заказывается отдельно)		
Код	Крепежные приспособления		
0	Нет		
K11	Кронштейн и аксессуары из углеродистой стали (на трубу 50 мм)		
K21	Кронштейн и аксессуары из нержавеющей стали 316 L (на трубу 50 мм)		
K12	Кронштейн и аксессуары из углеродистой стали (на плоскость)		
K22	Кронштейн и аксессуары из нержавеющей стали 316 L (на плоскость)		
Код	Дополнительные опции		
A1	Материал болтов и гаек для крепления фланцев – сталь нержавеющая		
C1	Обезжиривание (для измерения давления кислорода или хлора) (9)		
G1	Выходной сигнал $0-20 \text{ мA}^{(10)}$		
H1	Корпус из нержавеющей стали		
L1	Исполнение с улучшенными метрологическими характеристиками		
	(основная погрешность $\pm 0.04 \% \text{ДИ}^{(11)}$)		
0R	Стандартное исполнение		

 $^{^{(1)}}$ силиконовое масло не рекомендуется для работы с кислородом или хлором

⁽²⁾ не рекомендуется для измерения вакуума

⁽³⁾ не доступно для диапазонов А и В

⁽⁴⁾ без дренажных клапанов

⁽⁵⁾ максимальное давление 24 бара

⁽⁶⁾ уплотнение должно быть FKM

⁽⁷⁾ выносные мембраны устанавливаются посторонним производителем

⁽⁸⁾ для присоединения выносных мембран фланцы могут быть только из нержавеющей стали

³¹⁶L, минимальный диапазон 6 кПа

⁽⁹⁾ опция недоступна если фланцы из углеродистой стали (10) недоступно взрывозащищенное исполнение (11) только для датчиков со статическим давлением до 16 МПа и ВПИ от 50 до 2500 кПа

⁽¹²⁾ Exd и Exi относятся только к датчику и не относятся к адаптеру

Модель	Описание			
DMD 331-A-S	Датчик избыточного/абсолютного давления/разрежения			
	Диапазон			
Код	номинальн	минималь		
	ый	ный		
GA	-11 кПа	0,05 кПа		
GB	-55 кПа	0,13 кПа		
GC	-5050 кПа	0,42 кПа		
GD	-100250 кПа	2,08 кПа	Датчик избыточного	
GF	-1002500 кПа	20,83 кПа	давления/разрежения	
GH	-0.125 МПа	0,21 МПа		
GJ	-0.140 МПа	0,33 МПа		
AB	05 кПа	2 кПа		
AC	050 кПа	2,5 кПа		
AD	0250 кПа	5 кПа	П б	
AF	02500 кПа	20,83 кПа	Датчик абсолютного давления	
AH	025 МПа	0,21 МПа		
AJ	040 МПа	0,33 МПа		
Код	Материал м	тембраны	Заполняющая жидкость	
11	Сталь нержаво		Силиконовое масло ⁽¹⁾	
13	Сталь нержаво		Фторуглеродное масло ⁽²⁾	
H1	Hastelloy		Силиконовое масло ⁽¹⁾	
Н3	Hastelloy	C-276	Фторуглеродное масло ⁽²⁾	
M1	Monel		Силиконовое масло ^{(1) (3)}	
T1	Тант	гал	Силиконовое масло $^{(1)(3)}$	
T3	Тант	гал	Φ торуглеродное масло $^{(2)(3)}$	
1C	Сталь нержаво	еющая 316L	Галокарбон $4.2^{(2)(3)}$	
НС	Hastelloy	C-276	Галокарбон $4.2^{(2)(3)}$	
TC	Тант	ал	Галокарбон 4.2 ^{(2) (3)}	
Код	Матер	иал фланцев, адаптер	ов и крепежных деталей	
1		Сталь нержавеющая	я 316 L	
C	Сталь углер	одистая (дренажные кл	апаны из стали 316 L)	
Н		Hastelloy C-27	6	
M	Monel 400			
P	Сталь нерж	авеющая 316L с вставк	ами из PVDF ^{(2) (4) (5) (6)}	
Код		Материал уп	лотнений	
0	Без уплотнений (только при использовании выносных мембран)			
1		FKM		
3	EPDM			
5	NBR			
8	PTFE			
Код	Положение дренажных клапанов			
0	Без дренажных клапанов			
U	Верхнее			
D	Нижнее			
A	Напротив присоединения к процессу			
Код	Дисплей			
0	Дисплей отсутствует			
M	ЖК дисплей			

Код	Механическое присоединение		
0	½ -18 NPT без адаптера		
1	½ - 14 NPT с адаптером		
5	½ - 14 NPT с вставками из PVDF) (4) (5)		
6	$^{1}/_{4}$ -18 NPT с малым размером фланца $^{(2)}$ (4) (7) (8)		
8	Малый объем фланца для монтажа (под сварку) выносных мембран ^{(4) (7)}		
Код	Электрическое присоединение		
КОД	(кабельный ввод не входит в комплект поставки)		
N	два отверстия под каб. ввод $\frac{1}{2}$ - 14 NPT + одна заглушка		
M	два отверстия под каб. ввод М $20x1.5 + $ одна заглушка		
P	два отверстия под каб. ввод Pg 13.5 + одна заглушка		
G	два отверстия под каб. ввод 3/4 - 14 NPT (с переходником с 1/2 - 14		
	NPT из нерж. стали 316) $^{(12)}$ + одна заглушка		
Код	Возможность локальной настройки		
1	Есть (магнитный карандаш заказывается отдельно)		
Код	Крепежные приспособления		
0	Нет		
K11	Кронштейн и аксессуары из углеродистой стали (на трубу 50 мм)		
K21	Кронштейн и аксессуары из нержавеющей стали 316 L (на трубу 50 мм)		
K12	Кронштейн и аксессуары из углеродистой стали (на плоскость)		
K22	Кронштейн и аксессуары из нержавеющей стали 316 L (на плоскость)		
Код	Дополнительные опции		
A1	Материал болтов и гаек для крепления фланцев – сталь нержавеющая		
C1	Обезжиривание (для измерения давления кислорода или хлора) ⁽⁹⁾		
G1	Выходной сигнал 0–20 мА ⁽¹⁰⁾		
H1	Корпус из нержавеющей стали		
L1	Исполнение с улучшенными метрологическими характеристиками		
	(основная погрешность $\pm 0.04 \% \text{ДИ}^{(11)}$)		
0R	Стандартное исполнение		

силиконовое масло не рекомендуется для работы с кислородом или хлором

⁽²⁾ не рекомендуется для измерения вакуума

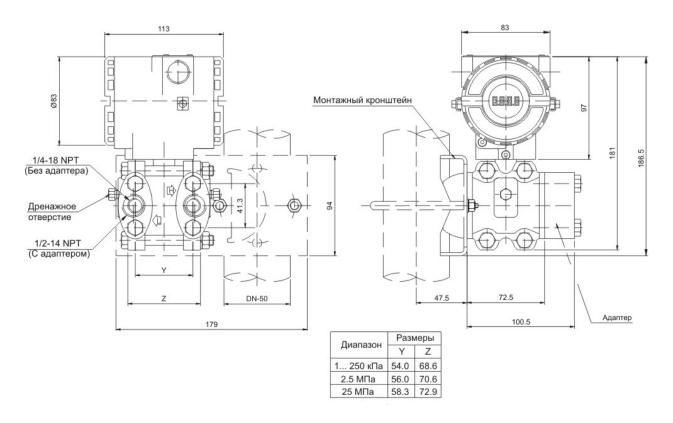
⁽³⁾ не доступно для диапазонов А и В

⁽⁴⁾ без дренажных клапанов

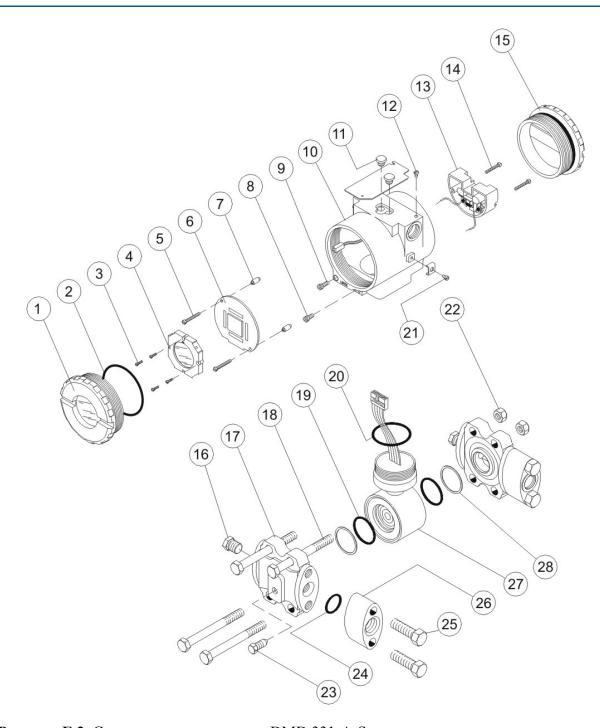
⁽⁵⁾ максимальное давление 24 бара

⁽⁶⁾ уплотнение должно быть FKM

⁽⁷⁾ выносные мембраны устанавливаются посторонним производителем (8) для присоединения выносных мембран фланцы могут быть только из нержавеющей стали 316L, минимальный диапазон 6 кПа


⁽⁹⁾ опция недоступна, если фланцы из углеродистой стали (10) недоступно взрывозащищённое исполнение

 $^{^{(11)}}$ только для датчиков избыточного давления с ВПИ от 50 до 2500 кПа и только для материала мембраны/заполн.жидк. 11 и Н1


⁽¹²⁾ Exd и Exi относятся только к датчику и не относятся к адаптеру

ПРИЛОЖЕНИЕ Б. Габаритные и присоединительные размеры. Состав

Рисунок Б.1. Габаритные и присоединительные размеры датчика DMD 331-A-S.

Рисунок Б.2. Составные части датчика DMD 331-A-S.

Перечень обозначений к рисунку Б.2:

- 1 Защитная крышка дисплея
- 2 Уплотнительное кольцо защитной крышки дисплея
- 3 Винты для фиксации дисплея
- 4 Дисплей
- 5 Винты
- 6 Электронный блок
- 7 Распорка
- 8 Винт для фиксации сенсора
- 9 Стопорный винт
- 10 Корпус
- 11 Заглушки отверстий локальной настройки
- 12 Винт для фиксации шильдика
- 13 Клеммная колодка
- 14 Винты
- 15 Крышка
- 16 Заглушка
- 17 Фланцы
- 18 Фланцевый болт
- 19, 20, 24 Уплотнительное кольцо
- 21 Винт заземления
- 22 Гайка
- 23 Дренажный винт
- 25 Винт для фиксации адаптера
- 26 Адаптер
- 27 Сенсор
- 28 Кольцо металлическое для защиты от выдавливания уплотнительного кольца 19

ПРИЛОЖЕНИЕ В. Схемы внешних электрических соединений

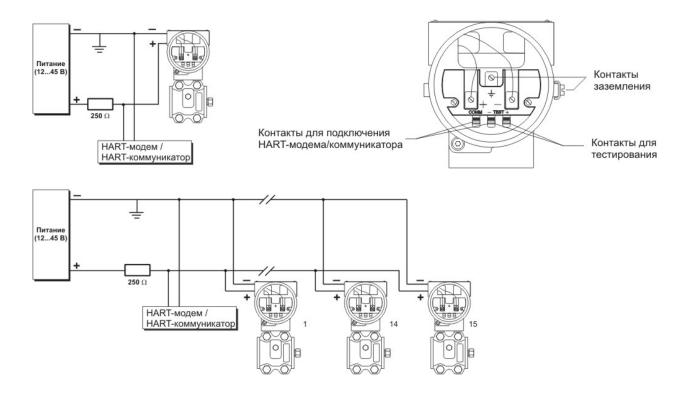
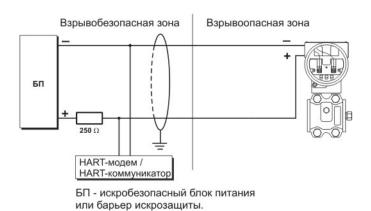



Рисунок В.1. Схемы внешних электрических соединений датчика обычного исполнения.

Рисунок В.2. Схема внешних электрических соединений датчика взрывозащищённого исполнения.